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m 
~. flpk(ErE*) = 6,k. (A4) 

p=l 

Multiplying both members of (A4) by ~ 1  and summing 
over the index k, we obtain 

p=l k=l 

where the Sayre-Hughes equation (2.5) has been used. 
Therefore 

13 = U -1, (A6) 

which is (2.9) for the P1 case. The proof of the relation 
13 = ½LI -~ that holds in the P i  case closely follows the 
same steps as in the P 1 case. 
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Abstract 

A new procedure of phase extension and refinement via 
electron density modification applicable to low-reso- 
lution protein crystal structures is described. The 
Sperm Whale myoglobin structure has been used as a 
working molecule. The procedure of phase extension 
has firstly been tested starting from a set of calculated 
phases at 4 A  resolution; the mean phase error 
obtained for the 9000 strongest reflections from 4 to 
1.8 ,/~ was 39°; subsequently a mean phase error of 
30 ° was spread into the low-resolution set and a phase 
refinement and extension procedure was carried out 
to 1.8/k resolution. The final mean phase errors of 
the 1184 low-resolution model and of the 4816 

0567-7394/83/010068-07501.50 

strongest reflections within 1.8 A were 22 and 50 ° 
respectively. The map calculated with this final set of 
reflections approaches in quality and details the map 
calculated with the 12 658 phases from the refined 
coordinates. 

Introduction 

A crucial step in modern protein crystallography is the 
calculation of a good quality electron density map of 
medium-to-high resolution, suitable for model building 
and/or least-squares refinement. 

Multiple isomorphous replacement methods (MIR) 
very often do not achieve this goal: the crystal- 
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lographer has therefore to take upon himself the 
laborious and time-consuming task of building and 
testing plausible models of the searched molecule. Even 
if he is supported by computer graphics he often needs 
additional chemical information such as the amino-acid 
sequence, which is not always available. 

Aplysia limacina myoglobin has been studied for 
some years in our laboratory (Ungaretti, Bolognesi, 
Cannillo, Oberti & Rossi, 1978), but we never 
succeeded in extending resolution beyond 3.6 A with 
MIR methods, owing to the failure in obtaining 
heavy-atom derivatives isomorphous to the native 
protein at higher resolution. Therefore we tried to set up 
a procedure for extending the low-resolution map. 
Sperm Whale myoglobin, very similar to Aplysia 
myoglobin, was chosen as a test molecule. The results 
so far obtained with density modification methods are 
reported in this paper. 

Density modification is a procedure which allows the 
refinement of a set of existing phases and their 
extension to higher resolution; this aim is gained by 
imposing in the direct space some constraints - which 
may be general or peculiar to the kind of molecule 
under investigation - upon the electron density dis- 
tribution and so modifying the starting map. By 
inversion of the modified map a new set of phases is 
obtained either for the reflections used to calculate the 
original map or for higher-resolution reflections, the 
phases of which were previously ignored. By combining 
the new phases calculated as above described with the 
observed amplitudes, a new map, containing additional 
structural information, can be calculated. This iterative 
procedure is in principle able to improve the quality of 
the starting phases and to increase the number of 
known phases. 

This method was firstly used as 'phase correction' by 
Hoppe & Gassmann (1968) for the structure de- 
termination of small molecules. Later on it was 
tentatively applied to macromolecules by Barret & 
Zwick (1971), Collins, Cotton, Hazen, Meyer & 
Morimoto (1975), Collins, Brice, La Cour & Legg 
(1976), Raghavan & Tulinsky (1979) and Schevitz, 
Podjarny, Zwick, Hughes & Sigler (1981). However all 
these authors faced serious difficulties mainly con- 
cerned with the intrinsic limitations of the method, such 
as quality and resolution of the starting set of phases, 
and with problems in handling the critical parameters 
of the density modification. 

In this paper we describe a density modification 
procedure which is easier with respect to the previous 
ones and apparently more suitable for refining and 
extending to high resolution the phases of a protein 
structure starting from a low-resolution model. 

Two different situations have been investigated: (a) 
phase extension starting from a 4 A resolution set of 
phases directly calculated from the coordinates; (b) 
phase refinement applied to a 'simulated' MIR set of 
phases (i.e. a set containing a phase-error distribution 
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similar to that usually obtained by MIR methods), 
followed by phase extension from 4 to 1.8 A re- 
solution. 

Method 

A good-quality low-resolution map of a protein usually 
allows the distinction between regions occupied by 
ordered atoms and regions occupied by disordered 
solvent. In the papers about density modification 
published so far it has been assumed that the electron 
density (p) in the solvent region can be flattened to a 
constant arbitrary value. On the other hand, the relative 
heights of the peaks in the molecule region may also 
represent false details in the electron density and may 
even suggest a wrong interpretation of the map. 
Therefore, we have supposed that the most reasonable 
density modification of a protein low-resolution map, 
also in the molecule region, is to flatten it to a unique 
constant value. In particular, in our calculation we have 
assumed: (1) Prnodlfled = 1 for p > fixed threshold value; 
( 2 )  Pmodlfled = 0 for p < fixed threshold value. 

In order to evaluate the error inherent in this 
assumption, a 1.8 A resulution map has been com- 
puted using the phases of the 12658 independent 
reflections calculated from the refined Sperm Whale 
myoglobin atomic coordinates (Watson, 1969); here- 
after these calculated phases will be called 'true'. By 
inversion of this map, modified according to (1) and 
(2), we obtained a mean phase error A~p = 17 ° and a 
residual factor R = Y IF o - Fc l /~  F o = 0.17 for all the 
reflections. It is important to note that this error is not 
only intrinsically low, but also is inversely related to the 
amplitudes (see Table 1). Two main reasons can 
account for this relationship: (1) the electron density 
map is strongly dominated by the phases of strong 
reflections; (2) weak reflections are highly affected by 
the errors inherent to the specific electron density 
modification procedure applied. 

Protein molecules often contain one or more metal 
atoms, such as iron, copper, and zinc, and the 
modification introduced by (1) may therefore be too 
drastic. The opportunity of introducing some con- 
straints has been investigated by assuming, for in- 
stance, p = 3 instead of p = 1 for the electron density 
higher than 1.8 e A -3 in a small volume (7.2 × 5.6 x 
7.2 A) containing the iron atom of the haem group. A 
slight improvement was observed in the calculated 
phase errors; it could probably be higher if one or more 
heavy atoms are present in a protein molecule. This 
fact suggests that heavy-atom derivatives may pro- 
bably be used more successfully in a density modi- 
fication procedure than the native protein. 

The atomic coordinates of Sperm Whale myoglobin 
available from the Protein Data Bank (Bernstein et al., 
1977) were used to calculate the original set of phases 
and amplitudes. For the calculation of the electron 
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Table 1. Mean phase error (o) and R index after inversion o f  the modified electron density map for  12 638 
reflections within 1.8 ,t~ resolution at various grid spacings 

0 .4A 0 .6A  0 .8A  

Number of Phase Phase Phase 
Block reflections F range error R error R error R 

ct~-4/~ model 1184 1369--0 5.2 0.081 6.2 0.085 7.6 0.103 
I 250 538-233 3.1 0.063 3.6 0.075 4.6 0.108 
II 250 232-190 3.6 0.074 4.3 0.087 5.6 0.123 
III 500 189-150 4.9 0.092 5.4 0.106 6.8 0.136 
IV 500 150-127 5.6 0.110 6.4 0.124 8.3 0.154 
V 500 127-111 6.0 0.121 7.3 0.140 9.3 0.165 
VI 1000 111-88 7.1 0.140 8.2 0.160 11.6 0.200 
VII 1000 88-72 8.0 0.166 9.7 0.193 13.8 0.254 
VIII 1000 72-60 10.3 0.195 12.6 0.224 17.7 0.288 
IX 2000 60-42 12.6 0.246 15.9 0.294 25.0 0.377 
X 2000 42-27 19.3 0.336 24.8 0.391' 36.3 0.518 
XI 2474 27-0 44.2 0.662 49.5 0.785 59.8 1.153 
Extended reflections 11 474 538-0 18.2 0.185 21.4 0.216 28.6 0.286 
Overall 12 658 1369-0 17.0 20.0 26.6 

density maps a FFT algorithm (Ten Eyck, 1977) was 
employed. 

Phase extension starting from a low-resolution model 

In order to optimize the extension procedure and to 
verify the assumptions previously described, we started 
from an electron density map calculated with the true 
phases and amplitudes of the 1184 independent 
reflections from oo to 4/~ resolution. As expected the 
following parameters soon turned out to be critical: (a) 
the grid used for sampling the electron density map; (b) 
the threshold value for the boundary between p = 0 and 
p = 1; (c) the selection criteria used to accept new 
phases during the extension procedure. 

(a) A considerable discussion about the maximum 
grid spacing which allows a good evaluation of phases 
and amplitudes has been reported in the literature. 
Several authors (Barret & Zwick, 1971; Collins et al., 
1975; Ten Eyck, 1977) investigated extensively the 
matter and finally agreed with Lipson & Cochran 
(1966) that: 'The number of points at which the 
electron density should be sampled in any one direction 
should be about three times the highest index observed 
in that direction'. 

Various grid spacings were however tested between 
0.8 A (2.25 times the highest index) and 0.2 A (9 
times). The best compromise between the increase in 
the computing time and the accuracy of the calculated 
phases was reached with a 0.4/t,  sampling. This grid 
spacing, which corresponds to a/162, b/76, c/88 (36, 
18, 20 are respectively the highest index values), is 
somewhat beyond the above-mentioned prudent 
criterion. 

(b) To evaluate the influence of the choice of the 
boundary level between molecule and solvent regions, 

every Fourier map was inverted several times, using 
different threshold values. Inspections of the different 
sets of calculated phases showed that the boundary 
level which, once chosen, reproduces most accurately 
the starting phases was that showing the lowest 
Y IF o -- Fe l /Y  F o ratio; in particular it has been found 
that the best threshold corresponded to roughly 0.6 e 
A -3 (i.e. only ~80 000 out of the ~540 000 grid points 
in one asymmetric unit needed to be considered as 
'molecular' ones). A slight deviation (+ 10 000 points) 
from the best threshold value did not affect signifi- 
cantly the overall F o -- F c agreement and was proved to 
be not crucial: once it has been chosen, few cycles of 
extension converged to a mean phase error very near to 
that obtained by working with the original best 
threshold. 

(c) As for the strategy of phase extension it was 
found that the crucial point was to arrange the 
reflections between 4 and 1.8/~ in order of decreasing 
amplitude instead of increasing resolution. Then small 
blocks of reflections were added successively in every 
step of the procedure to the already phased set. It was 
found that every addition of 'new' reflections (even if 
some of them were badly phased) reduced the phase 
errors of the reflections previously extended. After 
some additions, it turned out that a great improvement 
could be obtained by selecting the extended reflections 
with lowest phase errors and using them to calculate 
the next map. The best selection criterion was found to 
be R = I Fo - Fcl /F o, which was, on average, 
correlated with the phase error, particularly for the 
reflections of strong-medium intensity. The electron 
density map shows in fact significant changes when 
the phases of strong reflections are changed and this in 
general determines large variations in the calculated 
amplitudes. If the worst-phased reflections (i.e. those 
with R > 0.30) were excluded, a map which allowed the 
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calculation of new and, on the average, better phases 
for the excluded reflections was obtained. This pro- 
eedure was iterated for a few cycles. 

Moreover we found that it was very useful, after the 
inclusion of several extended reflections (e.g. 5000), to 
start the procedure again by using only the model and 
the first block containing the strongest extended 
reflections. 

This kind of procedure converges quite quickly with 
a small phase error for the extended reflections: if the 
1184 reflections within 4/~ resolution are used as the 
starting model, with the phases constrained to the true 
values, 9000 extended reflections within 1-8/k re- 
solution can be phased with a mean phase error of 20, 
26, 32, 39 ° respectively for the first 3000, 5000, 7000, 
9000 reflections arranged in order of decreasing 
amplitude. At the end of the extension procedure the 
calculated phases for the 4/i,  model differ by ~9 ° on 
the average from the true values. The resulting electron 
density map is fairly equivalent to the map calculated 
with the true phases and its interpretation is easy and 
straightforward. 

Phase refinement and extension 

Once strategy and parameters for the phase extension 
procedure had been optimized, they were applied to a 
set of data which simulated an experimental one. A 
good 4 A resolution MIR map has usually a mean 
figure of merit (f.o.m.) around 0.85 corresponding to a 
mean phase error of 30 °. As a consequence of the MIR 
phasing procedure, this error is more heavily dis- 
tributed on weaker acentric reflections, especially on 
those of higher resolution. Accordingly a mean phase 
error of 30 ° was spread in the 4 A resolution model of 
Sperm Whale myoglobin with a distribution against 
intensity and resolution of the reflections nearly 
equivalent to that obtained with MIR methods for the 
Aplysia limacina myoglobin. An individual f.o.m, equal 
to cos (phase error) was applied to every reflection for 
phase error <90 ° and a f.o.m, equal to 0 was applied 
for phase error >90°.  

It was soon clear that the phase extension procedure 
described above did not yield good enough results, if 
applied as with a set of true phases. The phase error 
present in the low-resolution model was heavily 
propagated into the new calculated phases. 

However, it was realized that there was a definite 
possibility of reducing the starting phase errors. A kind 
of phase refinement was therefore applied, by sub- 
sequent calculations and inversions of the low-re- 
solution starting map, firstly calculated only with 
reflections within 4 A, and successively also with the 
500 more intense extended reflections. As can be 
inferred from Table 2, a good improvement was 
obtained in the first cycle, especially for the strong 

reflections initially affected by great phase error. This 
fact shows how the modification and inversion of an 
electron density map can improve the MIR phases in 
protein crystallography. Furthermore, small blocks of 
reflections within 4 A resolution with a definite am- 
plitude range (e.g. 300-250, 250-200) were excluded 
for one cycle and then their phases and amplitudes 
were calculated again. This treatment is a kind of 
selection, like that shown in the previous paragraph for 
the extended reflections. In this way we obtained a 
lower and more favourable error distribution in the 
starting set. Even if the overall mean phase error has 
decreased only by a few degrees, the Fourier map, 
which is mainly dominated by the strong reflections, 
was considerably improved. 

The slight improvement of the low-resolution phases 
during the last cycle of refinement (see cycle 7 in Table 

Table 2. Distribution of the mean phase error (0) in 
the 4 A model during the refinement and extension 

procedure 

F range 

> 200 with 
f.o.m. <0.85 
>200 
<200* 
Overall 
Working set 

Number of Starting Cyc le  Cyc le  Cycle 
reflections set 1 7 35 

329 54.3 35.8 28.6 ~" 
688 30.7 22.3 18.9 17.6 
496 28.7 41.6 34.7 33.4 

1184 29.9 30-3 25.5 24.2 
1184 29.9 25.0 23.0 22.2 

* It was found that the method does not yield good phase values 
for weak low-resolution reflections if applied before extension: so 
the initial phases were used for this group of reflections. Together 
with the current phases of the reflections with F > 200 they made 
up the working set of phases. 

t During the extension procedure f.o.m.'s up to 1.0 were 
attributed to the reflections; therefore most of this class of 
reflections were promoted to f.o.m. > 0.85. 

8° t phase 
error (°) / 8 9 10 1 0  

6o 

60 

40 . . . .  ,c.-,r" " ' x  _.. , ,_,, . , , j .- .-. . . , , .  ,,_ . . . .  ---. 

20 
! 

~ ; ~0 40 cycles 

Fig. I. Mean phase error (o) vs number of cycles of phase 
refinement and extension for blocks of extended reflections 
between 4 and 1.8/k. Peculiarities of each block are defined in 
Table 3. Empty squares refer to the phase error for reflections 
which were not yet inserted in the calculation of the Fourier map. 
See text for further details. 
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2) suggested that we begin to exploit the information 
included in the extended reflections. 

The phase extension procedure was then applied as 
described above. The starting f.o.m, was firstly main- 
tained for the resolution model, then recalculated on the 
basis of the R index for individual reflections: this was 
done at first only for the reflections with f.o.m. <0.85 
and subsequently for all of them. A f.o.m, proportional 
to R was also attributed to the extended reflections, on 
the basis of the following R ranges: f.o.m. = 1.0 for the 
reflections with R < 0.1, 0.9 for R < 0.2, 0.8 for R < 
0.3, 0.6 for R < 0.4, 0.5 for R < 0.5, 0.3 for R > 0.5. 
The state of the phase refinement and extension 
procedure is monitored in Fig. 1, which refers to the 
phase errors of the ten blocks in which all the extended 
reflections have been arranged according to their 
amplitude. Cycle 1 is the first modification and 
inversion of the 4 A electron density map; cycles 2-4 
refer to the refinement of the model by means of 
additions of three blocks containing the strongest 566 
reflections; cycles 5-7 to the refinement by means of 
'selections' in the model; cycles 8-13 to the extension 
procedure up to a total of 6000 reflections. Cycles 
14-24 refer to the extension procedure from a new 
starting set made up of the 4/l, resolution refined model 
and the first two blocks of extended reflections. Cycles 
25-35 are only a repetition of cycles 14-24. The 
phase-error distribution in cycles 13, 24 and 35 is 
shown in Table 3. It is quite clear that the im- 
provement obtained in cycles 25 to 35 is very small 
compared to that of the previous iteration, suggesting 
that the procedure has reached convergence, at least 
under the present conditions. 

Furthermore, the high value for the phase error of 
the very weak reflections (see e.g. block 10) dissuades 
one from going on with the extension procedure 
towards lower amplitudes. However, this is not a 
crucial drawback because the Fourier map of a protein 
molecule is dominated by the strongest reflections. This 
can be seen in Fig. 2 where four sections of the electron 
density map calculated with (a) the true phases of 
12 658 reflections within 1.8,4, and (b) the 4,4, model 
and the 4816 strongest reflections are reported. 

The meaning of the phase errors obtained with this 
procedure can be evaluated by inspection of the final 
electron density map. Fig. 3 shows the comparison 
between (a) the original 'best Fourier' at 4 ,~, re- 
solution, (b) the 1.8/k resolution map calculated with 
phases and f.o.m, of the 1184 + 4816 = 6000 reflections 
refined and extended as described above, (c) the 1.8/l, 
resolution map calculated with the true phases of the 
same 6000 reflections, and (d) the 4 A resolution map 
calculated with the true values for low-resolution 
phases. The atomic positions of the non-hydrogen 
atoms are dotted in order to expedite the inter- 
pretation of the electron density. Map (b) is very similar 
to (c) and it looks greatly improved in comparison with 

(a). It is worthwhile noting that the changes of the 
electron density during the process are always in the 
direction of the 1.8/l, true map. Many of those 
modifications are not foreseeable from the 4/l, true 
map and have been therefore purely determined by the 
phase extension procedure. 

Table 3. Mean phase error (°) for  extended reflections 
during the extension procedure 

Number 
of Cycle Cycle Cycle Cycle 

Block reflections F range 0* 13 24 35 

4/i, model 1184 1369-0 29.9 23.0 23.1 22.2 
1 116 538-279 42.1 25.0 24.6 21.9 
2 200 279-220 57.9 37.4 35.6 35.5 
3 250 220-184 60.2 47.3 42.7 42.3 
4 250 184-162 61.2 50.4 47.1 43.9 
5 500 162-134 64.0 55.8 53.6 52.8 
6 500 134-116 65.9 61.4 57.6 53.4 
7 500 116-103 63.4 60.4 60.6 54.4 
8 500 103-92 69.1 67.7 62.5 58.1 
9 1000 92-75 67.9 67.6 64.7 63.9 

10 1000 75-62 69.7 67.5 66.4 68.4 

* Mean phase error before the insertion in the Fourier map 
calculation. 

(b) 
Fig. 2. Sections of the electron density map between z = 0-87 and 

z = 0.96 calculated with: (a) the 12 658 independent reflections 
to 1.8,4, resolution, (b) the 4/i, model and the 4816 strongest 
reflections of the 1.8/i, set of data. Only one independent 
molecule has been reported. 
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(a) 

(b) 

(c) 

(a) 
Fig. 3. The same sections of the electron density map as in Fig. 2 

from: (a) the 4 A original map (mean phase error A~ = 30°), (b) 
the final extended map calculated with the 4 A model and the 
4816 more intense reflections within 1.8 A, (c) the theoretical 
map obtained with the true phases of the previous reflections, (d) 
the theoretical 4 A map. 

Conclusion 

The density modification procedure described in this 
paper, if applied to a correct low-resolution map, allows 
one to obtain good and straightforward results. If the 
original low-resolution phases are strongly affected 
by experimental errors, the potentiality of the method 
is reduced. However, iterative cycles of refinement of 
the model and of phase extension are able to produce 
fairly good results which allow one to solve all the 
ambiguities which are present in the interpretation of 
the original 4 A best Fourier map; moreover, many 
significant details, due to the increased resolution, are 
added. This situation allows one to build quite easily a 
molecular model of the protein and to undertake 
least-squares refinement. 

The advantages of this kind of procedure are evident: 
no preliminary knowledge of the amino-acid sequence 
and/or structural details are needed. The human 
interference is kept to a minimum; typically it may be 
enough to choose the threshold value of p and R in 
order to make a not too drastic selection. 

On the other hand, every kind of known structural 
detail may be added as an additional constraint of the 
density modification. In our case, for instance, we have 
used p = 3 for a limited number of points around the 
position of the haem of the myoglobin molecule 
determined from the low-resolution MIR map. 

First attempts to apply this procedure to Aplysia 
myoglobin MIR data are now in progress. Phases up to 
2.8 A resolution have been in the meanwhile obtained 
in our laboratory starting from the 3.6 ]k MIR map by 
applying energy and crystallographic refinement with 
the program written by Jack & Levitt (1978). In this 
way about 80% of non-hydrogen atoms have been 
placed in the electron density map. We expect it will be 
possible to make in a short time a comparison between 
and two sets of phases in order to evaluate the 
advantages and deficiencies of the two procedures. 

We would like to thank G. Germani for his help in 
various computational problems throughout this work. 
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Abstract 

Two questions which have been independently studied 
(the distribution of colors in colored lattices and lattice 
preservation in derivative lattices) are in fact closely 
related. It is possible, for instance, to determine the 
distribution of colors in rows and nets by the 
lattice-preservation indices c r and cp as functions of row 
indices [uo, vo, Wo] and net indices (ho, ko, lo), respec- 
tively. A formula is also given for the number of classes 
of equivalent derivative lattices of a given index n. 

1. Introduction 

Recently two questions have been studied 
independently: 

(1) The distribution of colors among the lattice 
points or nodes in the rows and the nets of a colored 
lattice L c (Harker, 1978). 

(2) The preservation of the lattice nodes by the rows 
and the nets of a derivative lattice (sublattice) L'  of a 
lattice L (isomorphic subgroup of P1) (Billiet, 1979; 
Rolley-Le Coz & Billiet, 1980, 1981). 

* To whom all correspondence should be addressed. 
Present address: Institut des Sciences Exactes, Universit6 de 

S6tif, S6tif, Algeria. 

0567-7394/83/010074-03501.50 

In fact these questions are closely related. Every 
derivative lattice can be identified with a colored lattice 
L c and vice versa. We assign a single color to the nodes 
of the derivative lattice L ' ;  the cosets of L' ,  with respect 
to L, correspond to different colors. Every translation 
of the colored lattice L c by a vector of L' leaves the 
color distribution in the lattice L c unchanged, whereas a 
translation by an element of each of the eosets of L'  
corresponds to a certain color permutation, the same 
permutation for all members of a coset. The number n 
of distinct colors is equal to the index of L'  in L. 
Conversely, the nodes of L c with a single color define a 
derivative lattice L' .  

In this paper we combine our efforts to clarify such 
misunderstood points as the distribution of colored 
nodes as a function o f  the indices of rows and nets. For 
definitions and terminology, the reader is referred to the 
previous papers. 

2. Colored nodes and derivative lattices 

Let L be a three-dimensional lattice and L' a sublattice 
of L of finite index. Primitive unit cells (ao,bo,c o) of L 
and (a'o,b'o,c'o) of L'  may always be chosen in such a 
way that their vectors are related by the simple 
equations a' o = f a  o, b' o = fgb o, c' o = fghc o. Here f,  g and h 
are positive integers whose values are unique for a 
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